INDIAN SCHOOL AL WADI AL KABIR
 DEPARTMENT OF SCIENCE 2022-23

Subject: Physics (042)
MARKING SCHEME ASSESSMENT 1

1.	d	1
2.	C	1
3.	d	1
4.	b	
5	a	
6	a	
7	d	
8	b	
9	c	
10	b	
11	$\mathrm{V}=\mathrm{O} / 4 \pi \epsilon_{\mathrm{o}} \mathrm{R}$, Potential at centre due to one charge and multiply by 6 ,	1+1
12	(a) $E=\lambda / 2 \pi \epsilon_{0} R$ (b)	1+1
	(a) Ans: - $\mathrm{R}=\mathrm{\rho} \mathrm{I} / \mathrm{A}, \mathrm{R} \propto 1 / \mathrm{r}^{2}$ (b) Ans: $-\mathrm{R}=\mathrm{V} / \mathrm{I}$ and varies directly to temperature. At T_{1} resistance is greater. $\left(T_{1}>T_{2}\right)$	1+1

14	Ans: - (a) (i) DE (slope is negative and hence resistance). (ii) BC (straight line) (b) (i) Cu (metals, alloys). (ii) Si (semiconductor).	$1+1$
15	When unit charge moving with unit speed perpendicular to field experiences force of one newton. Or Ans. (a device consisting perpendicular electric and magnetic fields that can be used as a velocity filter for charged particles. It is used to measure charge to mass ratio and also used in mass spectrometer.)	$1+1$
16	(i)B $=\mu$ NI/2r (ii) M = NIA (A = πr^{2})	
17	The inductive reactance of the solenoid increases. Consequently, a large fraction of the applied AC voltage appears across the solenoid. As a result of this, there is a less voltage across the bulb and the brightness of the bulb decreases. Or	$1+1$

18	$\phi=\oint_{s} \vec{E} \cdot \overrightarrow{d S}=\frac{q}{\varepsilon_{0}}$ (ii) Net flux $\phi=\phi_{1}+\phi_{2}$ where $\phi_{1}=\vec{E} \cdot \overrightarrow{d S}$ $\begin{aligned} & =2 a C d S \cos 0^{\circ}=2 a C \times a^{2}=2 a^{3} C \\ \phi_{2} & =a C \times a^{2} \cos 180^{\circ}=-a^{3} C \\ \phi & =2 a^{3} C+\left(-a^{3} C\right)=a^{3} C \mathrm{Nm}^{2} \mathrm{C}^{-1} \end{aligned}$ (iii) Net charge (q) $=\varepsilon_{0} \times \phi=a^{3} C \varepsilon_{0}$ coulomb $q=a^{3} C \quad \varepsilon_{0}$ coulomb.	$\begin{aligned} & 1+1+ \\ & 1 \end{aligned}$
19	$\vec{E} \Rightarrow \mathrm{E} \vec{A}=\frac{K(+q)}{x^{2}} \mathrm{E} \vec{B}=\frac{K(+9 q)}{(10 a-x)^{2}}$ Substituting in eq. 1 $\begin{aligned} & \frac{K(+\not q)}{x^{2}}=\frac{K(+9 \not q)}{(10 a-x)^{2}} \\ & (10 a-x)^{2}=9 \mathrm{x}^{2} \Rightarrow 10 a-x=3 \mathrm{x} \\ & 10 \mathrm{a}=4 \mathrm{x} \Rightarrow \mathrm{x}=\frac{10}{4} 9 \\ & x=2.5 \mathrm{a} \text { from change }(+\mathrm{q}) \end{aligned}$	$\begin{aligned} & 1+1+ \\ & 1 \end{aligned}$
20	Drift velocity per unit electric field applied is termed as mobility. (i) When temperature of the conductor decreases, the relaxation time т of the electrons in the conductor increases, so mobility μ increase. (ii) Mobility μ is independent of applied potential difference Or Hints: -current through the capacitor (CE) is zero hence branch CEF is not worth in the circuit. So, equivalent resistance is 5Ω.	

	Total current is 3 A . Current is $C D=1 \mathrm{~A}$		
21	```Solution: Total resistance }=4\times4/4+4=2 Current I = 10V/2\Omega=5A Since the resistances of both the branches are equal, therefore the current of 5 A shall be equally distributed. Current through each branch =5/2 A =2.5A V V VA}-\mp@subsup{V}{B}{}=(\mp@subsup{V}{C}{}-\mp@subsup{V}{B}{})-(\mp@subsup{V}{C}{}-\mp@subsup{V}{A}{})=7.5-2.5=5.0v```		
22	$\begin{aligned} & F=q v B \sin \theta, \\ & \text { Expression for } F=\\| B \sin \theta \end{aligned}$		
23	Both \vec{B}_{1} and \vec{B}_{2} are mutually perpendicular, so magnetic field at O is $\begin{aligned} & \mathrm{B}=\sqrt{\mathrm{B}_{1}^{2}+\mathrm{B}_{2}^{2}}=\sqrt{2} \mathrm{~B}_{1}\left(\text { as } \mathrm{B}_{1}=\mathrm{B}_{2}\right) \\ & =\sqrt{2} \frac{\mu_{0} \mathrm{R}^{2}}{2\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}} \end{aligned}$ As $R \ll x$ $\begin{aligned} & \mathrm{B}=\frac{\sqrt{2} \mu_{0} \mathrm{iR}^{2}}{2 \cdot \mathrm{x}^{3}}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \sqrt{2} \mu_{0} i\left(\pi \mathrm{R}^{2}\right)}{\mathrm{x}^{3}} \\ & =\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \sqrt{2} \mu_{\mathrm{L}} \mathrm{iA}}{\mathrm{x}^{3}} \end{aligned}$ where $A=\pi R^{2}$ is area of loop. $\begin{aligned} & \tan \theta=\frac{B_{2}}{B_{1}} \Rightarrow \tan \theta=1\left(\because B_{2}=B_{1}\right) \\ & \Rightarrow \theta=\frac{\pi}{4} \end{aligned}$		
24	Statement Diagram Proof steps	$\begin{array}{\|l\|} \hline 1,1 / 2, \\ 1.5 \end{array}$	

25	The capacitance without dielectric is $C=\frac{A \varepsilon_{0}}{d}$ When dielectric slab is inserted, the capacitance becomes, $\mathrm{C}^{\prime}=\frac{\mathrm{AK} \epsilon_{0}}{\mathrm{~d}}=\mathrm{KC}$ where K be the dielectric constant. i)Thus, the capacitance will increase K times of the initial. ii) As the battery is disconnected so the charge on capacitor remains constant. Since, $\mathrm{Q}=\mathrm{CV}$ so potential V will decrease and also $\mathrm{E}=\mathrm{V} / \mathrm{d}$ so the field E will also decrease. iii) Stored energy, $\mathrm{U}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}$. As charge Q is constant and C is increasing so energy will decrease. (ii)drawing of field lines Or (a) (i) $\mathrm{C}_{\mathrm{B}}>\mathrm{C}_{\mathrm{A}}$ (ii) Energy density, $\begin{aligned} & \mathrm{U}=\frac{1}{2} \epsilon_{0} \mathrm{E}^{2} \\ & \text { But, } \mathrm{E}=\frac{\sigma}{\epsilon_{0}}=\frac{\mathrm{Q}}{\mathrm{~A} \epsilon_{0}} \\ & \therefore \mathrm{U}=\frac{1}{2} \frac{\epsilon_{0} \mathrm{Q}^{2}}{\mathrm{~A}^{2} \epsilon_{0}} \Rightarrow \mathrm{U}=\frac{\mathrm{Q}^{2}}{2 \mathrm{~A}^{2}} \\ & \Rightarrow \mathrm{U} \propto \frac{1}{\mathrm{~A}^{2}} \Rightarrow \mathrm{U}_{\mathrm{A}}>\mathrm{U}_{\mathrm{B}} . \end{aligned}$ (b)	$3+2$

	(c) $\begin{aligned} G & =50 \Omega \\ I_{g} & =5 \mathrm{~mA}=5 \times 10^{-3} \mathrm{~A} \\ V & =15 \mathrm{~V} \end{aligned}$ The galvanometer can be converted into a voltmeter when a high resist connected in series with it. Value of R is given by: $\begin{aligned} R & =\frac{V}{I_{g}}-G=\frac{15}{5 \times 10^{-3}}-50 \\ & =3000-50 \\ & =2950 \Omega=2.95 \mathrm{k} \Omega . \end{aligned}$
27	(b) Equivalent resistance of the circuit is 10Ω. hence current is 10 A . Current across, 5Ω is $8 \mathrm{~A}, \mathrm{p}=\mathrm{I}^{2} \mathrm{R}=64 \times 5=320 \mathrm{~W}$. Or -(a), (i) series (ii) parallel. (b) Try by connecting two parallel and one in series or connecting one parallel and two in series. (c) $16 / 3 \Omega$. and $5 R$.
28	(i)d, (ii)b, (iii)c, (iv)b, (v)c
29	(i)a, (ii)b, (iii)c, (iv)c, (v)b

