INDIAN SCHOOL AL WADI AL KABIR

DEPARTMENT OF SCIENCE 2022-23

Subject: Physics (042)

MARKING SCHEME ASSESSMENT 1

1.	d	1
2.	C	1
3.	d	1
4.	b	
5	a	
6	a	
7	d	
8	b	
9	С	
10	b	
11	$V = Q/4\pi\epsilon_{o}R$, Potential at centre due to one charge and multiply by 6,	1+1
12	(a) $E = \lambda/2\pi\epsilon_{o}R$	1+1
	(b)	
	2	
13	(a) Ans: - R = ρ I/A, R \propto 1/r ² (b) Ans: -R = V/I and varies directly to temperature. At T ₁ resistance is greater. (T ₁ > T ₂)	1+1

	Ans: - (a) (i) DE (slope is negative and hence resistance). (ii) BC (straight line) (b) (i) Cu (metals, alloys). (ii) Si (semiconductor).	1+1
15	When unit charge moving with unit speed perpendicular to field experiences force of one newton. Or Ans. (a device consisting perpendicular electric and magnetic fields that can be used as a velocity filter for charged particles. It is used to measure charge to mass ratio and also used in mass spectrometer.)	1+1
16	(i)B = $\mu_o NI/2r$ (ii) M = NIA (A = πr^2)	1+1
	The inductive reactance of the solenoid increases. Consequently, a large fraction of the applied AC voltage appears across the solenoid. As a result of this, there is a less voltage across the bulb and the brightness of the bulb decreases. Or	

Total current is 3A.	
Current is CD = 1A	
Solution: Total resistance = $4 \times 4/4 + 4 = 2\Omega$	
Current I = $10V/2\Omega = 5A$	
Since the resistances of both the branches are equal, therefore the current of 5 A shall be equally distributed.	
$V_C - V_B = 2.5 \times 3 = 7.5 \text{ V}.$	
$V_A - V_B = (V_C - V_B) - (V_C - V_A) = 7.5 - 2.5 = 5.0 \text{ V}.$	
•	
Expression for $F = IIB \sin\theta$	
Both $\vec{B_1}$ and $\vec{B_2}$ are mutually perpendicular, so magnetic field at O is	
$B = \sqrt{B_1^2 + B_2^2} = \sqrt{2B_1} \text{ (as } B_1 = B_2)$	
$=\sqrt{2}\frac{\mu_0 i R^2}{2(R^2+x^2)^{3/2}}$	
$AsR \ll x$	
$\mathbf{B} = \frac{\sqrt{2}\mu_0 i R^2}{2.\mathbf{x}^3} = \frac{\mu_0}{4\pi}.\frac{2\sqrt{2}\mu_0 i (\pi R^2)}{\mathbf{x}^3}$	
$= \frac{\mu_0}{4\pi} \cdot \frac{2\sqrt{2}\mu_0 i A}{x^3}$	
where $A = \pi R^2$ is area of loop.	
$\tan \theta = \frac{B_2}{B_1} \implies \tan \theta = 1 \ (\because B_2 = B_1)$	
$\Rightarrow \theta = \frac{\pi}{4}$	
Statement	1, ½,
Diagram	1.5
Proof steps	
	Current is CD = 1A $ \begin{array}{l} \text{Solution: Total resistance} = 4 \times 4/4 + 4 = 2\Omega \\ \text{Current I} = 10V/2\Omega = 5A \\ \text{Since the resistances of both the branches are equal, therefore the current of 5 A shall be equally distributed.} \\ \text{Current through each branch} = 5/2 A = 2.5A \\ V_C - V_A = 2.5 \times 1 = 2.5 \times V \\ V_C - V_B = 2.5 \times 3 = 7.5 \times V \\ V_A - V_B = (V_C - V_B) - (V_C - V_A) = 7.5 - 2.5 = 5.0 \times V \\ \text{F} = qvB \sin\theta, \\ \text{Expression for F} = IlB \sin\theta \\ \\ \text{Both $\vec{B_1}$ and $\vec{B_2}$ are mutually perpendicular, so magnetic field at O is } \\ \text{B} = \sqrt{B_1^2 + B_2^2} = \sqrt{2}B_1 \text{ (as $B_1 = B_2$)} \\ = \sqrt{2} \frac{\mu_0 i R^2}{2(R^2 + x^2)^{3/2}} \\ \text{As $R} << \kappa \\ \\ \text{B} = \frac{\sqrt{2}\mu_0 i R^2}{2x^3} = \frac{\mu_0}{4\pi} \cdot \frac{2\sqrt{2}\mu_0 i (\pi R^2)}{x^3} \\ = \frac{\mu_0}{4\pi} \cdot \frac{2\sqrt{2}\mu_0 i A}{x^3} \\ \text{where $A = \pi R^2$ is area of loop.} \\ \text{tan $\theta = \frac{B_2}{B_1}$ $\Rightarrow $\tan \theta = 1$ $(\because B_2 = B_1$)} \\ \Rightarrow \theta = \frac{\pi}{4} \\ \text{Statement} \\ \text{Diagram} \\ \end{array}$

The capacitance without dielectric is C = $\frac{A\epsilon_0}{d}$

When dielectric slab is inserted, the capacitance becomes, $C' = \frac{AK \varepsilon_0}{d} = KC$ where K be the dielectric constant.

- i)Thus, the capacitance will increase K times of the initial.
- ii) As the battery is disconnected so the charge on capacitor remains constant. Since, Q = CV so potential V will decrease and also E = V/d so the field E will also decrease.
- iii) Stored energy, $U=\frac{Q^2}{2C}$. As charge Q is constant and C is increasing so energy will decrease.
- (ii)drawing of field lines

Or

- (a)
- (i) $C_B > C_A$
- (ii)

Energy density,

$$U = \frac{1}{2}\epsilon_0 E^2$$

But,
$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{A\epsilon_0}$$

$$\therefore U = \frac{1}{2} \frac{\epsilon_0 Q^2}{A^2 \epsilon_0} \Rightarrow U = \frac{Q^2}{2A^2}$$

$$\Rightarrow$$
 U $\propto \frac{1}{A^2} \Rightarrow$ U_A $>$ U_B.

(b)

Equipotential surfaces are closer together in the regions of strong field and farther apart in the regions of weak field.

$${\rm E}=-\frac{dV}{dr}$$

E = negative potential gradient

For same change in dV, E = $-\frac{dV}{dr}$ where 'dr' represents the distance between equipotential surfaces.

²⁶ Principal of galvanometer

Construction

Diagram

Current sensitivity

Voltage sensitivity

Or

(a) Torque (t) on the loop is given by:

Vector T = NI vector A x vector B

which can be written as,

vector T = vector M x vector B

where, vector M is the magnetic dipole moment given by

(c)
$$G = 50 \Omega$$

 $I_g = 5 m A = 5 \times 10^{-3} A$
 $V = 15 V$

The galvanometer can be converted into a voltmeter when a high resist connected in series with it. Value of R is given by:

$$R = \frac{V}{I_g} - G = \frac{15}{5 \times 10^{-3}} - 50$$
$$= 3000 - 50$$
$$= 29 50 \Omega = 2.95 \text{ k}\Omega.$$

(b) Equivalent resistance of the circuit is 10 Ω . hence current is 10 A. Current across, 5 Ω is 8 A, p = $I^2R = 64 \times 5 = 320 \text{ W}$.

Or

- -(a), (i) series (ii) parallel.
- (b) Try by connecting two parallel and one in series or connecting

one parallel and two in series.

- (c) $16/3\Omega$. and 5R.
- ²⁸ (i)d, (ii)b, (iii)c, (iv)b, (v)c
- ²⁹ (i)a, (ii)b, (iii)c, (iv)c, (v)b